64 research outputs found

    The Degeneration Evaluation of Xilamuren Grassland

    Get PDF

    An Empirical Analysis of the Impacts of the Sharing Economy Platforms on the U.S. Labor Market

    Get PDF
    Each generation of digital innovation has caused a dramatic change in the way people work. Sharing economy is the latest trend of digital innovation, and it has fundamentally changed the traditional business models. In this paper, we empirically examine the impacts of the sharing economy platforms (specifically, Uber) on the labor market in terms of labor force participation, unemployment rate, supply, and wage of low-skilled workers. Combining a data set of Uber entry time and several microdata sets, we utilize a difference-in-differences (DID) method to investigate whether the above measures before and after Uber entry are significantly different across the U.S. metropolitan areas. Our empirical findings show that sharing economy platforms such as Uber significantly decrease the unemployment rate and increase the labor force participation. We also find evidence of a shift in the supply of low skill workers and consequently a higher wage rate for such workers in the traditional industries

    An Empirical Analysis of On-demand Ride Sharing and Traffic Congestion

    Get PDF
    Sharing economy, which leverages information technology to re-distribute unused or underutilized assets to people who are willing to pay for the services, has received tremendous attention in the last few years. Its creative business model has disrupted many traditional industries (e.g., transportation, hotel) by fundamentally changing the mechanism to facilitate the matching of demand with supply in real time. In this research, we investigate how Uber, a peer-to-peer mobile ride-sharing platform, affects traffic congestion in the urban areas of the United States. Combining data from Uber and the Urban Mobility Report, we empirically examine whether and how the entry of Uber car services affect traffic congestion using a difference-in-difference framework. Findings from this research provide evidence on the potential effect of ride sharing services in the transportation industry, contributing to the understanding of the sharing economy and government policy decisions

    Experimental Performance of Blind Position Estimation Using Deep Learning

    Full text link
    Accurate indoor positioning for wireless communication systems represents an important step towards enhanced reliability and security, which are crucial aspects for realizing Industry 4.0. In this context, this paper presents an investigation on the real-world indoor positioning performance that can be obtained using a deep learning (DL)-based technique. For obtaining experimental data, we collect power measurements associated with reference positions using a wireless sensor network in an indoor scenario. The DL-based positioning scheme is modeled as a supervised learning problem, where the function that describes the relation between measured signal power values and their corresponding transmitter coordinates is approximated. We compare the DL approach to two different schemes with varying degrees of online computational complexity. Namely, maximum likelihood estimation and proximity. Furthermore, we provide a performance comparison of DL positioning trained with data generated exclusively based on a statistical path loss model and tested with experimental data.Comment: Published in: GLOBECOM 2022 - 2022 IEEE Global Communications Conferenc

    Effects of EGR rates on combustion and emission characteristics in a diesel engine with n-butanol/PODE3-4/diesel blends

    Get PDF
    An experimental investigation is conducted on the influence of EGR (Exhaust Gas Recirculation) rates (0–40%) on the combustion and emission characteristics of n-butanol/diesel/PODE3-4 blends at low-temperature combustion mode in diesel engine. The results show that at identical EGR rate, compared to D100 (diesel fuel), the peak values both of the mean cylinder pressure and the heat release rate of BD20 (20% butanol and 80% diesel in volume) are increased, ignition delay is extended, and the brake thermal efficiency is enhanced. Concerning BD20 blended with PODE3-4, the ignition delay is shortened, while both the brake thermal efficiency and the combustion efficiency increase. At the EGR rate below 30%, as the EGR rate grows, the effects on emission of soot, CO and HC are not significant, while the emission of NOx is sharply reduced; when the EGR rate is above 30%, as it grows, the emissions of soot, CO, and HC drastically rise. As EGR rate grows, the total particulate matter (PM) number concentrations of four fuels firstly decline and then rise, the total PM mass concentrations keep stable firstly and then rise drastically. As the proportion of added PODE3-4 in BD20 grows, the particle geometric mean diameters further decrease

    Interaural Level Difference-Dependent Gain Control and Synaptic Scaling Underlying Binaural Computation

    Get PDF
    SummaryBinaural integration in the central nucleus of inferior colliculus (ICC) plays a critical role in sound localization. However, its arithmetic nature and underlying synaptic mechanisms remain unclear. Here, we showed in mouse ICC neurons that the contralateral dominance is created by a “push-pull”-like mechanism, with contralaterally dominant excitation and more bilaterally balanced inhibition. Importantly, binaural spiking response is generated apparently from an ipsilaterally mediated scaling of contralateral response, leaving frequency tuning unchanged. This scaling effect is attributed to a divisive attenuation of contralaterally evoked synaptic excitation onto ICC neurons with their inhibition largely unaffected. Thus, a gain control mediates the linear transformation from monaural to binaural spike responses. The gain value is modulated by interaural level difference (ILD) primarily through scaling excitation to different levels. The ILD-dependent synaptic scaling and gain adjustment allow ICC neurons to dynamically encode interaural sound localization cues while maintaining an invariant representation of other independent sound attributes

    Robust and Intensity-Dependent Synaptic Inhibition Underlies the Generation of Non-monotonic Neurons in the Mouse Inferior Colliculus

    Get PDF
    Intensity and frequency are the two main properties of sound. The non-monotonic neurons in the auditory system are thought to represent sound intensity. The central nucleus of the inferior colliculus (ICC), as an important information integration nucleus of the auditory system, is also involved in the processing of intensity encoding. Although previous researchers have hinted at the importance of inhibitory effects on the formation of non-monotonic neurons, the specific underlying synaptic mechanisms in the ICC are still unclear. Therefore, we applied the in vivo whole-cell voltage-clamp technique to record the excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) in the ICC neurons, and compared the effects of excitation and inhibition on the membrane potential outputs. We found that non-monotonic neuron responses could not only be inherited from the lower nucleus but also be created in the ICC. By integrating with a relatively weak IPSC, approximately 35% of the monotonic excitatory inputs remained in the ICC. In the remaining cases, monotonic excitatory inputs were reshaped into non-monotonic outputs by the dominating inhibition at high intensity, which also enhanced the non-monotonic nature of the non-monotonic excitatory inputs

    Urban Aerosol: Spatiotemporal Variation & Source Characterization

    No full text
    <p>Long and short-term exposure to particulate matter (PM) are linked to adverse heath endpoints. Evidence indicates that PM composition such as metals and organic carbon (OC) might drive the health effects. As airborne pollutants show significant intracity spatiotemporal variation, mobile sampling and distributed monitors are utilized to capture the variation pattern. The measurements are then fed to develop models to better characterize the relationship between exposure and health outcomes. Two sampling campaigns were conducted. One was sole mobile sampling in 2013 summer and winter in Pittsburgh, PA. Thirty-six sites were chosen based on three stratification variables: traffic density, proximity to point sources, and elevation. The other one was hybrid sampling network, incorporating a mobile sampling platform, 15 distributed monitors, and a supersite. We designed two case studies (transect and downtown), selected 14 neighborhoods (~1 km2), and conducted sampling in 2016 summer/fall and winter. Spatial variation of PM2.5 mass and composition was studied in the 2013 campaign. X-ray fluorescence (XRF) was used to analyze concentrations of 26 elements: Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, and Pb. Trace elements had a broad range of concentrations from 0 to 300 ng/m3. Comparison of data from mobile sampling with stationary monitors showed reasonable agreement. We developed Land use regression (LUR) models to describe spatial variation of PM2.5, Si, S, Cl, K, Ca, Ti, Cr, Fe, Cu, and Zn. Independent variables included traffic influence, land-use type, and facility emissions. Models had an average R2 of 0.57 (SD = 0.16). Traffic related variables explained the most variability with an average R2 contribution of 0.20 (SD = 0.20). Overall, these results demonstrated significant intra-urban spatial variability of fine particle composition. Spatial variation of OC was based on the 2013 campaign as well. We collected organic carbon (OC) on quartz filters, quantified different OC components with thermaloptical analysis, and grouped them based on volatility in decreasing order (OC1, OC2, OC3, OC4, and pyrolyzed carbon (PC)). We compared our ambient OC concentrations (both gas and particle phase) to similar measurements from vehicle dynamometer tests, cooking emissions, biomass burning emissions, and a highway traffic tunnel. OC2 and OC3 loading on ambient filters showed a strong correlation with primary emissions while OC4 and PC were more spatially homogenous. While we tested our hypothesis of OC2 and OC3 as markers of fresh source exposure for Pittsburgh, the relationship seemed to hold at a national level. Land use regression (LUR) models were developed for the OC fractions, and models had an average R2 of 0.64 (SD = 0.09). We demonstrate that OC2 and OC3 can be useful markers for fresh emissions, OC4 is a secondary OC indicator, and PC represents both biomass burning and secondary aerosol. People with higher OC exposure are likely inhaling more fresh OC2 and OC3, since secondary OC4 and PC varies much less drastically in space or with local primary sources. With the 2016 hybrid sampling campaign, we addressed the intracity exposure patterns, as they could be more complex than intercity ones because of local traffic, restaurants, land use, and point sources. This network studied a wide range of pollutants (CO2, CO, NO2, PM1 mass and composition, and particle number PN). Mobile measurements and distributed monitors show good agreement. PN hotspots are strongly associated with restaurants and highway traffic. PN at sites with large local source impacts tends to have larger diurnal variation than daily variation, while CO in downtown center shows the opposite trend. PN exhibits the largest spatial and temporal variations. Spatial variation is generally larger than temporal variation among all five pollutants (CO2, NO2, CO, PN, and PM1). These findings provide quantitative comparison between spatial and temporal variation in different scales, and support the theoretical validity of developing long-term exposure models from short-term mobile measurement. A combined sampling network with mobile and distributed monitor could prove more valuable in studying intracity air pollution. In the 2016 hybrid sampling campaign, we also studied spatial variability of air pollution in the vicinity of monitors. Monitoring network is essential for protecting public health, though evaluation is needed to assess spatial representativeness of monitors in different environments. Mobile sampling was conducted repeatedly around 15 distributed monitors. Substantial short-range spatial variability was observed. Spatial variation was consistently larger than temporal variation for NO2 and CO at different sites. Ultrafine particles were highly dynamic both in space and time. PM1 was less spatially and temporally variable. Urban locations had more frequent episodic source plume events compared with background sites. Using a single monitor measurement to represent surrounding ~1 km2 areas could introduce an average daily exposure misclassification of 46 ppb (SD = 26) for CO (30% of regional background), 3 ppb (SD = 2) for NO2 (43% of background), 4007 #/cm3 (SD = 1909) for ultrafine particle number (64% of background), and 1.2 μg/m3 (SD = 1.0) for PM1 (13% of background). Exposure differences showed fair correlation with traditional land use covariates such as traffic and restaurant density, and the magnitude of misclassification could be even bigger for urban neighborhoods.</p
    corecore